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Abstract. On the basis of the method developed by Price [ 19901 for selecting a limited 
number of channels to best represent the high-resolution spectra of materials within a spectral 
region, this paper presents a simplified procedure to reconstruct such spectra directly from 
their spectral measurements in the selected channels. Applying this procedure, it is shown 
that spectral reflectivities of more than 50 soil and vegetation samples measured in the 
laboratory at Johns Hopkins University (JHU) can be reconstructed using six selected 
channels in the 8- 13 pm spectral region with an uncertainty of 0.005. It is also shown that the 
process of spectral channel selection proposed in this paper minimizes the propagation of 
measurement error to the whole reconstructed spectrum. Thus, if the reconstruction of 
spectrum is nearly insensitive to a small change in the center wavelengths and widths of the 
selected channels, the resulting errors on this reconstructed spectrum due to the measurement 
errors are increased by such a change. In order to validate this approach, the channels 
selected using the JHU data set are used to reconstruct the spectral data measured at the 
University of California at Santa Barbara for 43 types of soils. The results showed that the 
soil reflectance spectrum could be reconstructed by the channel reflectance measured in these 
six channels with their basis functions to within 0.005 almost over the full spectral range 
except for wavelengths around 8.6 pm and 9.5 pm for which the reconstruction is within 
0.009. It should be kept in mind that these results refer to laboratory spectral data but not to 
remote sensing data where additional uncertainties will come from radiometric noise, errors 
associated with radiometric calibration, atmospheric corrections, and temperature/emissivity 
separation. Appreciable future work therefore has to be done with remote sensing data. 

1. Introduction 

Recent developments in detector technology and 
microelectronics make it possible to design high spectral 
resolution radiometers permitting the identification of 
narrower spectral features of target. However, such high 
spectral or hyperspectral resolution implies a cost both in 
money and in loss of other capabilities that might be offered 
through design trade-offs. Moreover, interband correlation 
may exist in high spectral resolution data which provide 
redundant data and reduce the signal to noise ratio. The 
questions that have to be addressed are what is the minimum 
number of spectral channels necessary for a particular 
application and how to choose the central wavelength position 
and spectral width of those channels. To answer these 
questions, Price [ 19751 developed an iterative procedure to 
analyze the spectra measured from space by infrared 
interferometer spectrometer (Iris) onboard Nimbus 4 satellite. 

--_---_--- 
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He showed that it was adequate to determine the spectral 
variability in the spectral domain 6.25-25 pm with nine wide 
spectral bands. Using the same procedure but for the analysis 
of the reflectance spectra from more than 500 soil samples in 
the visible and near-infrared spectral domain, Price [1990] 
showed that it could be possible to reconstruct the spectra of 
soils with a few well selected channels in this domain. In 
recent years, a large number of measurements of spectral 
emissivity of natural media in the spectral range 8-13 pm 
have been performed in the laboratory [Sdisbury and D ‘Aria, 
1992; Salisbury et al., 1994; Snyder et al., 19971, and large 
spectral emissivity variations are observed in 8-13 pm; 
moreover, several thermal infrared spectral radiometers will 
be launched or are in progress, such as the advanced 
spaceborne thermal emission and reflectance radiometer 
(ASTER) [K&e et al., 199 11. The determination of optimal 
bands to analyze particular features is becoming very timely. 

The questions as to whether the selection of channels 
obtained from Price’s method is unique and optimal are 
therefore crucial. In other words, using Price’s procedure, is it 
possible to select several sets of channels that would lead to 
the same reconstruction of the spectra with the same 
uncertainty? The answers to these questions are complex and 
depend not only on the spectral characteristics of the materials 
but also on the atmosphere and the temperature/emissivity 
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separation methods as well as on the noise of the radiometer. 
These important questions deserve a careful study that is in 
progress and will therefore not be addressed in detail in this 
paper, which will be concerned with a first approach to their 
solution. Since the answer to these questions depends on the 
noise of the instrument, it is necessary to have a method 
which is based on the quantities actually measured. We 
propose therefore in the second section of this paper an 
extension of Price’s approach to determine the minimum 
spectral channels necessary to reconstruct a complete 
spectrum from laboratory reflectance (emissivity) measured in 
these spectral channels. Although the method proposed is 
general, we apply it, in section 3, to the selection of spectral 
channels for soil and vegetation spectra reconstruction in the 
spectral region 8-13 pm using laboratory data. Two 
independent laboratory spectral data sets are used as a 
practical example to select the minimum channels and to 
validate the method. This is only an example; there are other 
types of spectral analysis which can be performed such as 
mineral and rock analysis. There are other spectral regions to 
be considered such as 3-5 pm [Salisbury and D’Aria, 19941. 
As a consequence, the practical results obtained in section 3 
will not be applicable without extension to these situations. 
Furthermore, since this paper uses laboratory data as an 
illustration, the practical results obtained cannot be extended 
to remote sensing data without addressing, for instance, the 
problems related to atmospheric corrections and 
temperature/emissivity separation. Therefore the selection of 
channels proposed in the example in this paper may not be 
optimal for those more general situations, and the procedure 
proposed has to be extended to those cases, which implies that 
appreciable future work be done in this respect. For instance, 
in order to give some order of the magnitude of the impact of 
the atmospheric effects on the choice of channels, we discuss 
in section 3 the impact of the displacement of channels which 
are in the ozone and water vapor absorption bands. Section 4 
is then devoted to a sensitivity study and an error analysis. To 
this end, we introduce statistical noise in the data measured in 
the selected channels, and we analyze the impact of the choice 
of the selected channels on the error generated in the 
reconstructed spectrum. This leads to a criterion of 
optimization which is briefly discussed. Finally, some 
potential applications are discussed in section 5. 

2. Channel Selection Procedure and Spectral 
Reconstruction 

Considering that all spectral bands are not independent, it 
may be possible to identify a set of independent (uncorrelated) 
channels from which all other can be derived. A method for 
such an identification has been developed by Price [ 19751 and 
applied to spectra from satellite instrument Iris and to 
laboratory and field reflectance spectra in visible and near- 
infrared by the same author [Price, 1990, 1994, 19971. 

2.1. Price’s Procedure 

Let na@)= (x?,x!$, . . . . x:) represent the spectral signature 
of material a measured over the set of n wavelength values 

~=(W*, . . ..a>. where n is assumed to be high enough to 
resolve all spectral features. The principle of Price’s method 
is to express the spectrum xa as the weighed sum of A4 
spectral basis function in appropriately selected 
channel i, namely, 

i=l 

where the weights Spare wavelength integrals related to the 
original spectrum xa (;1) and the basis functions am,, are 
spectral shapes (independent on the material a ) defined from 
statistical analysis of a collection of spectra and A4 is the 
number of basis functions (channels) required to describe the 
xa(il) to within very small residuals. The procedure 
developed by Price is an iterative approach. The first iteration 
assumes that expression (1) reduces to one channel only and 
both Sf and n(A) are determined. At (i-1)th iteration, it is 
assumed that 

J=l 

and we calculate at ith iteration the residuals 

J=l 

by introducing new channel weight S,? and new channel basis 
function q,(A) such that 

At each iteration, the approach consists of two phases. 
2.1.1. Phase 1: Selection of channel position. Since the 

number of wavelengths representing the high-resolution 
spectrum may be vary large, the inversion of the very high 
dimensionality matrices involved in the process is 
computationally intensive and subject to runoff errors. 
Furthermore, existence of noise and spectral redundancy in 
the data lead to failure in matrix inversion, and the standard 
methods for spectral analysis, such as principal components 
analysis, encounter difficulties. In order to overcome these 
difficulties, the first step in this phase is to use the Gram- 
Schmidt procedure to select a limited set (L, L<<n) of 
preliminary basis vectors which provide an acceptable 
approximation to the actual set of the spectral data. 

Let &y(A) be the residual vector at (i-1)th iteration, which 
is the difference between the measured spectrum of material cx 
and the approximate expansion of this spectrum to order i-l 
such as 

C%f(;l)= X”(A)- ‘2Sypj(A). (2) 
j=l 

We use the Gram-Schmidt procedure to construct a set of L 
Gram-Schmidt unit vectors eh(/Z) (h=l ,L) from the residuals 
vectors Sxp (2) so that for all spectra the residuals vectors 
may be represented by these L Gram-Schmidt vectors: 

&$(A) = icfeh(A)+ ra(A), 
h=l 

where r”(A) is the residuals and ct is the inner product of the 
two vectors eh (A) and b)cp (n> defined by 

and, by construction, the vectors eh(;l) are a set of 
orthonormalized vectors according to the previous inner 
product. 

From the coefficients c; of these L basis vectors, the 
covariance matrix C whose component, ckh, is constructed 

bY 
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Ckh = &zc; (k, h=l,L), 
Cl=1 

where N is the total number of samples. Then the principal- 
component analysis is applied to this LxL covariance matrix. 
From the component y,#, Of L eigenvectors Of dimensionality 
L, plus the original basis vectors eh(A) of dimensionality n, 
we construct approximate L eigenvectors J%(/Z) of 
dimensionality n for the full spectra, that is, 

Eda) = &w&) - 
h=l 

Since the first eigenvector Ek(A) describes most of the 
data set’s variability, a spectral region where the absolute 
value of the first eigenvector is large takes into account most 
of this variability, and the channel central wavelength must be 
chosen in this -spectral region. The choice of the channel 
central wavelength and width in this spectral region (interval) 
is the result of a trade-off between the width of channel and 
the signal-to-noise ratio, In fact, if a narrow channel increases 
the ability to identify a narrow spectral feature, it reduces the 
signal-to-noise ratio compared with a broader channel. Such a 
trade-off for the remote sensing instrument should consider 
the atmospheric properties. Considering realistic values of 
channel widths in the thermal infrared domain (such as those 
of the most recent thermal infrared radiometers), we choose in 
the practical example channel widths varying from 0.3 pm to 
0.5 urn depending on the sharpness around the maximum 
value of the first eigenvector. Figure 2 illustrates, for our case 
study, the spectral variation of the largest eigenvector (largest 
eigenvalue) at each step of the iteration and the positions of 
the selected channels indicated by the bars labeled in channel 
numbers (the height of the bars have no meaning). One notes 
in Figure 2 that some maxima are sharp, while others are 
smoother. 

2.1.2. Phase 2: Determination of the spectral basis 
function f& (A ) . Knowing the interval of channel i, 

;II mill 9 4 max (the lowest and highest wavelength values for 
channel i, respectively), the coefficients S,? are computed as 
the mean value of dicp (2) over this interval: 

sp = 1 

Aj max - Ai min I 
Al max sxy (a) dA = 1 sxp (a) daj . 
4 mln 

(3) 

According to the principle of the method, the residual vector 
8x?@) is approximated at ith iteration by 

&q(A)= s$pi (a); (4) 

therefore the basis functions q,(A) can be determined by the 
minimization of (4) 

f [w @M] q&)= a=’ 
N 

c( r Sp 
a=1 

(5) 

and can satis@ I&b = 1 * 
At this point, the procedure advances to the next iteration 
(i+l). The iteration of the process ends when the residual 
vectors have no observable pattern, or seem to be dominated 

eigenvectors, to select the channel positions and widths, to 
determine the basis functions pl(A), and to calculate the 
quantities Sp are detailed by Price [ 1990, 19941. 

2.2. Extension of Price’s Spectral Reconstruction Method 

The method proposed by Price is powerful, but the 
calculations of the coefficients Sp Ii-om (3) are somewhat 
complicated, and furthermore the coefficients Sp are not 
simply related to the measured quantities as explained below. 
We propose in the following a simpler way to calculate these 
quantities which makes better use of this method and 
furthermore which allows us to express the emissivity or 
reflectivity directly in terms of the measured quantities. Once 
all channel positions and widths are defined by Price’s 
procedure as described in section 2.1.1 (phase l), an 
alternative method can be used to reconstruct directly the 
spectrum xQ(il) with the quantities my measured in the 
selected channels. We express x”(A) directly in terms of rnp 
as follows: 

Xa(A)= @(A)+ fVfai(n), (6) 
i=l 

where, by definition, rnp is the channel average of the spectral 
quantity x”(A) weighed by the spectral response function, 
J;(n) , of the detector in channel i, and is given by 

(7) 

a,(a) is the spectral basis function predetermined from 
multiple regression of (6) over the whole data set, and M is 
the total number of channels used to approximate xa (1) by 

(1). 
The advantage of (6) is that it uses directly the measured 

quantities rnp instead of SF to reconstruct a spectrum. This 
avoids using the iterative procedure to compute Sp by Price’s 
method. 

In fact, assuming that J;(n) = 1 for comparison, we define 

bu =[qj(A)d& bii ~1 

so that 6,, is the integral over the ith spectral domain of thejth 
basis function. By inserting (2) into (3), it is easy to show that 
the SF can be written as 

with 
j=l 

i-i 
dii = 1 dv = - Cbikdk/ j < i 

k=j 

which transforms (1) into 

P(a)= fmPal(A) 
r=l 

with 

a,@)= fd,iV,@l 
j=/ 

(8) 

(9) 

I() a, a da, = 1. 
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Figure 1. General properties of the emissivity spectra for Johns Hopkins University (JHU) and University of 
California at Santa Barbara (UCSB) data sets of soil, vegetation, water, and snow samples: (a) mean 
emissivity spectrum and (b) standard deviation of emissivity for each wavelength. 

Note that the only difference between (8) and (6) is that the 
latter one has one more function ao(;l). This function is, 
indeed, very small in terms of reflectivity (~0.004) over the 
whole spectral range as shown in Figures 8 and 9. 

Another difference with Price’s approach is that in Price’s 
approach the channel basis functions pi(a) are determined 
iteration by iteration. It means that the choice of channel i+k 
has no impact on the function pi (A) . In our approach, since 
the minimization leading to the spectral basis function a, (A) 

is global, there is an impact of the choice of channel i+k on 
a, (a). This makes the method more stable and gives some 
control over error propagation as will be discussed in section 
4. 

From the definition of rnp (expression (7)), the functions 
a, (a) have the follow properties: 
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Figure 3. Spectral basis functions q,r (a) with associated channel positions and widths (bars) for channel set 
A. Numerals in each bar indicate the channel number. 

where drk is the Kronecker symbol (6,, =l and Slk =O if 
k f i ). In other words, the average of the function a,+ (a) in 

each of the spectral domains k + i is null. For our analysis, 
xa (2) will be either the spectral emissivity E(jl) or the 
spectral hemispheric reflectivity p(a) in the case of spectral 
signature reconstruction. Since E(a) = I - p(a) according to 
Kirchhoff s law for opaque media, only p(a) will be used in 
this paper. 

3. Application to Laboratory Spectral Data Sets 

The application of the method focuses on soil, vegetation, 
water, and snow, which are essential components of the 
terrestrial ecosystem. Minerals and rocks will be considered in 
the future. 

Two data sets were used in this study. One consists of 53 
spectra measured in the laboratory at Johns Hopkins 
University (JHU) for different soil, vegetation, and snow 
samples. Sampling locations and brief physical descriptions of 
these samples were given by Salisbwy and D ‘Aria [1992]. 
Suffice it to say here that these soil samples were obtained 
from all over the United States except for the aridisols which 
come primarily from the Middle East. Another data set 
contains 43 spectra measured in the laboratory at the 
University of California at Santa Barbara (UCSB) for 
different soil samples obtained mainly from different places in 
California, Nevada, and Maryland. All spectra in these two 
data sets are the spectral variation of directional hemispherical 
reflectance measured in the laboratory by the use of an 

integrating sphere and a thermal infrared spectrometer. The 
methodology of the collection of soils samples and their 
measurements as hemispherical reflectance are well 
documented by Salisbury and D ‘Aria [I 9921 and Snyder et al. 
[ 19971. In this study, the JHU data set is used to select the 
minimum number of channels (positions and widths) 
necessary to best reconstruct soil spectra in 8-13 pm and to 
determine their associated basis functions, whereas the UCSB 
data set is used for evaluating the performance of the 
proposed method. 

3.1. Spectral Emissivity Variation of Soil and Agricultural 
Surfaces in the 8-13 pm Region 

The general properties of the spectra for these two data sets 
are displayed in Figure 1. Figure la shows the spectral 
variation of the average emissivity computed from the JHU 
and the UCSB data sets, and Figure lb displays the 
corresponding spectral variation of the second moment of 
these data sets. 

It is interesting to note the following for a given data set: 
(1) For given wavelength, the larger the variation of 
emissivity is, the smaller the average emissivity is. (2) The 
longer the wavelength is, the smaller the variation of 
emissivity is. (3) The variation of emissivity for a wavelength 
greater than 10 ym is about 0.02; this may lead to an error of 
1.2 K on surface temperature [Becker, 19871. (4) There are no 
simple analytical expressions to model these spectral 
variations. The spectral shapes of the average emissivity and 
the second moment of spectral emissivity in the two data sets 
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Figure 6. Standard deviation for each wavelength between the measured and reconstructed reflectance 
spectra using set B of selected channels: (a) one channel, 8.1-8.4 urn; (b) two channels, 8.1-8.4 urn and 11 .O- 
11.5 urn; (c) three channels, 8.1-8.4 pm, 11.0-l 1.5 urn, and 8.5-8.9 urn; (d) four channels, 8.1-8.4 urn, 11 .O- 
11.5 urn, 8.5-8.9 urn, and 9.9-10.2 urn; (e) five channels, 8.1-8.4 pm, 11.0-l 1.5 urn, 8.5-8.9 pm, 9.9-10.2 urn 
and 9.0-9.4 pm; (f) six channels, 8.1-8.4 urn, 11.0-11.5 urn, 8.5-8.9 urn, 9.9-10.2 urn, 9.0-9.4 urn, and 12.01 
12.5 urn. The dotted curve represents the standard deviation obtained using equation (6) with the six channels. 
The bars represent the channel positions and widths as indicated in Figure 5. 

are similar, even though they are obtained from measurements 
of different samples with different instruments. 

3.2. Selection of Channels 

In order to test our method, Price’s procedure described 
above was first applied to the reflectance spectra measured in 
the laboratory by Salisbury et al. [1992] (JHU data set). The 
iteration has been stopped after the selection of the sixth 

--------_I--- 

channel, because at the seventh iteration there is no dominant 
eigenvector which can explain the major part of the spectral 
variability. Figure 2 illustrates the successive first 
eigenvectors together with the associated channel positions 
and widths, while the spectral basis function p,(A) and 
associated channels are shown in Figure 3. This set of selected 
channels will be referred to as channel set A in the following. 
Figure 2 shows that one of the channels of set A (channel 4) is 
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Figure 7. Standard deviation for each wavelength between 
the measured and reconstructed reflectance spectra using sets 
A and B of selected channels. The bars represent the channel 
positions and widths. Numerals indicate the channel numbers. 

right in the ozone absorption band, while another one 
(channel 6) is in the water vapor absorption band. 

Although we do not include the atmospheric effects in our 
studies, we want to study the impact of the displacement of 
the selected channels which may be necessary for remote 
sensing. The spectral regions corresponding to the strong 
ozone absorption in the atmosphere at 9.4 to 9.8 pm and the 
strong water vapor absorption above 12.5 pm have been 
excluded in a second channel selection procedure. For this 
reason, the positions of channels 4 and 6 have been shifted out 
of the absorption band, but they are as close as possible to the 
regions where the corresponding eigenvectors have the larger 
values. The successive first eigenvectors and the spectral basis 
function p, (2) for this new channel set, referred to as channel 
set B in the following, are displayed in Figures 4 and 5, 
respectively. 

In order to illustrate how the method works, Figure 6 
displays the residual standard deviation error on signatures 
resulting from increasing the number of channels used for 
reconstructing the spectrum with the channel set B. Figure 6a 
shows the residual standard deviation error using only one 
channel. Figures 6b-6f show how successive introduction of a 
new channel reduces the residual error. It can be observed that 
with the four first channels of the channel set B, the largest 
standard deviation does not exceed 0.01, and with six 
channels of the channel set B, it does not exceed 0.005. The 
addition of a seventh channel would have not improved this 
result, although it may lead to a better reconstruction locally 
around this channel position. Figure 7 compares the residual 
standard deviation errors obtained using six channels of the 
channel set A with that obtained using the channel set B. It 
turns out that both set A and set B yield very similar results 
and lead to equivalent uncertainties when there are no errors 
introduced in the measurements (we shall see in section 4 that 
when such errors are introduced, set A generates smaller 
errors). The differences occur mainly in the spectral region 
selected for channels 4 and 6, and the minima correspond 
obviously to the channels selected for the measurements. 

We then applied to the same data set the method which we 
proposed in this paper (equation (6)). The results are shown 
on Figure 6f by the dotted curve noted “second method” 
results. One can see from Figure 6f and Table 1 that our 
approach gives the same reconstructed values as those 
produced by Price’s approach, although the a,@) shown on 
Figure 8 for channel set A and on Figure 9 for channel set B 
are different from the p,(n) (Figures 3 and 5) as 
demonstrated by (9). Cbmparing Figure 8 with Figure 9, one 
notes that the positions of the maxima of the basis functions 
a, (A) for channels 4 and 6 are independent of the positions of 
the selected channels and are always at the spectral regions 
where their corresponding first eigenvectors are large. 
Furthermore, the maxima of the basis functions a,(A) for 
channels 4 and 6 in channel set B are larger than that in 
channel set A. This results from the fact that In,(l) dA, must 
be equal to unity, although the channel i does not correspond 

Table 1. Unexplained Variance and Cumulative Percentage Variance Described by A4 Channels With Two Different 
Methods 

Iteration/Channel M 

Unexplained Variance: Var(M)* Cumulative Variance Described, CVar(M),+ % 

Price (Equation (1)) This study (Equation (6)) Price (Equation (1)) This study (Equation (6)) 

0 1583.4 1583.4 0 0 

1 181.6 122.0 88.5 92.3 

2 72.9 67.4 95.4 95.7 

3 24.3 22.8 98.5 98.6 

4 11.4 11.3 99.3 99.3 

5 6.8 6.5 99.6 99.6 

6 2.2 2.1 99.9 99.9 

* Var(M) represents the unexplained variance (J4) defined as C,“=, I’,‘(&; (A,), d/z , 
&~(~)=xa(A)- ~f!,S~q,(A) for 

where Mis the total number of channels, N 

is the total number of samples, Price’s method (see (l)), and 

~~~(~)=xa(/l)-ao(~)-C~, my a,(A) for our method (see (6)). 

+ CVar(A4) is the cumulative percentage variance described by A4 channels defined as1 00.0 - 
Var(M) 

&j;;*(xa(A)~dA 1ooeo ’ 
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Figure 8. Spectral variation of six spectral basis functions a, (2) determined by minimization of equation (6) 
for channel set A over the whole JHU data set. The bars represent the channel positions, and the numerals 
indicate the channel number. 
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Figure 9. Same as Figure 9 but for channel set B. 
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Figure 10. 
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Measured (symbols) and reconstructed (lines) reflectance spectra for (a) and (b) 
(c) a few vegetation and water samples. 
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Figure 11. Standard deviation for each wavelength between 
the reconstructed and measured spectra for the 43 soil samples 
in the UCSB data set. Note that the spectra are reconstructed 
by equation (6) using a,(A) determined with the JHU data 
set. 

to the maximum of a,(A). This has an important impact on 
the error propagation discussed in section 4. We see also that 
if the function a, (A) is not null within channel k, a, (A) 
values change their signs within this channel in order to insure 
la, (2) d& = 0. It is also interesting to note that forcing 
channel 4 to be outside of the theoretically selected spectral 
domain has no impact on the positions of channels 5 and 6 as 
it is seen by comparison of Figures 2 and 4. 

3.3. Results of Spectrum Reconstruction 

3.3.1. JHU data set. We have tested the efficiency of our 
approach on the JHU data set for control using the channel set 
B of selected channels (which takes into account the ozone 
and water vapor absorption bands). Figure 10 presents a few 
examples of reconstructed signatures (in the 8- 13 pm band) 
based on the six selected channels (channel set B) and their 
corresponding spectral basis functions. The reconstruction is 
excellent in all cases; it is extremely good for all soil spectra. 
The reason is that the soil signatures are correlated because 
most of the spectral features occur in the same regions, being 
associated with the relative abundance of silicates and 
carbonates plus a few minor constituents. Contrarily, the 
“worst” results are observed with vegetation signatures that 
are not correlated to mineral spectral features. Probably, the 
vegetation signatures are not correlated among themselves. 

3.3.2. UCSB data set. The reconstruction technique 
(equation 6) was applied to the UCSB data set to evaluate the 
performance of the developed procedure because the UCSB 
data set is independent of the JHU data set. First, using (7), 
we simulated the measured quantities m,? in each of the six 
selected channels of set B for each sample a in the UCSB 
data set, then we reconstructed all spectra using (6) with the 
coefficients (basis functions) a, (A) determined with the JHU 
data set and given in Figure 9. Figure 11 displays the standard 
deviation for each wavelength between the reconstructed and 
measured reflectance spectra. It can be seen that (6) 
reconstructs spectra to within 0.005 for almost the full 
spectral range except for wavelengths around 8.6 pm and 9.5 
pm for which the reconstruction is within 0.009. As was done 

in Figure 10 for the JHU data set, a few examples of 
reconstructed signatures in the 8-13 pm region for the UCSB 
data set are displayed in Figure 12. The reconstruction is not 
as good as that for the JHU data set. The reasons for this are 
as follows: (1) The fifty soil samples in the JHU data set used 
to determine the channel positions, widths, and the associated 
spectral basis functions were obtained mainly over the United 
States; they represent certainly a fraction of the types of soils 
present in the world. It could be possible that some types of 
soils in the UCSB data set are not found in the JHU data set. 
(2) The use of the small data samples (50 samples) produces 
less than optimal results; therefore larger samples would have 
yielded more efficient results. In order to improve the 
reconstruction, such an analysis of the differences between 
reconstructed and measured reflectance spectra may be used 
to select more channels using the proposed method. 

4. Sensitivity Study and Error Analysis 

4.1. Sensitivity Analysis 

In order to show how the spectrum reconstruction is 
sensitive to the chosen center wavelengths and widths of the 
selected channels, the spectral residual standard deviations 
were calculated using three sets of selected channels modified 
with respect to channel set A as follows: In set 1, the channel 
widths w are unchanged, but the center wavelengths ;1, of 
all channels are shifted toward the lower value by 0.1 pm. 
(Aw= 0 and A& = -0. 1 pm). In set 2, the center 
wavelengths are unchanged, but the channel widths of all 
channels increased by 0.2 pm ( Aw = 0.2 pm and A& = 0 ). In 
set 3, both the channel widths and center wavelengths of all 
channels changed ( Aw = 0.1 pm, A& = -0.05 pm). 

Figure 13 displays the spectral residual standard deviation 
for these three cases and that for the channel set A. We note 
that at least for this data set, the spectrum reconstruction is 
nearly insensitive to a small change in the center wavelengths 
and widths of the selected channels. This result can be 
explained because the modified channels still lie partly in the 
spectral region where the values of the first eigenvector are 
large. Should we have chosen a channel completely outside of 
this spectral region, the standard deviation would have been 
dramatically increased as is shown in Figure 14 in which only 
the position of channel 3 was moved from 8.5-8.9 urn to 9.2- 
9.6 pm. 

4.2. Error Analysis 

Considering that reflectance measurements are made with 
random error gm, , the resulting error on the reconstructed 
spectrum, c’w (2) can be derived by applying the error theory 
to (6). It is given by 

where agaX is the maximum random error made on the 
measurements among A4 channels. 

Expression (10) shows that the error on the reconstructed 
spectrum is amplified by an amplification factor A(A) : 

(11) 
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Figure 12. Same as Figure 10 but for a few soil samples in the UCSB data set. Here Sl and S2 represent 
sample 1 and sample 2, respectively. Additional abbreviations are as follows: DV, Death valley soil; KO, 
Koehn soil; CO, Concord soil; OK, Oklahoma soil; PL, Railroad valley playa soil; and PO, Railroad valley 
soil powder. 



LI ET AL.: CHANNEL SELECTION FOR SPECTRUM RECONSTRUCTION 22,283 

0.7 i ’ ” “I ” “‘I ” ” ’ ” ” ” ’ ” ” “‘I ” “I ” “I ” ’ ” ’ “I / 

- set A: w, h, given in Fig 2 by six bars 
. . . . . . case 1: Aw=O, Ah,=-0.1 pm 

l case 2: Aw=0.2pm, Ah,=0 

0 case 3: Aw=O. 1 pm, Ah,=-0.05pm 

0.0 

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 

Wavalength h(pm) 

Figure 13. Standard deviation for each wavelength between the measured and reconstructed reflectance 
spectra using six channels of set A with different center wavelengths and/or different widths. A& is the 
difference between the channel wavelength center in the study case and that indicated in Figure 2. Aw has the 
same meaning as A& but for channel width. 

Figure 15 displays the magnitudes of the amplification factor 
A@) for both channel set A and set B. We note that the 

amplification factor in the reconstruction of the spectrum is 
smaller using channel set A than using channel set B. Should 
we have chosen the positions of channels 4 and 6 at their right 

8.0 a.5 90 9.5 10.0 10.5 11.0 11.5 12 0 12.5 13.0 

Wavalength h(pm) 

Figure 14, Standard deviation for each wavelength between 
the measured and reconstructed reflectance spectra with six 
channels: Channel set A and channel set A with the position 
of channel 3 moved to the spectral region 9.2-9.6 pm outside 
of the spectral region where the values of the first eigenvector 
are large (see Figure 2). 

positions (as channels in set A), the error on the reconstructed 
spectrum in the spectral regions 9.4-10.0 pm and 12.4-13.1 
pm would have been reduced by about 50%. Furthermore, 
comparing the amplification factor of the channel set A with 
the amplification factors of the three cases used in the 
sensitivity analysis of section 4.1, Figure 16 illustrates that if 
the standard deviation is not sensitive to a small change of 
channel positions, the amplification factor is. 
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Figure 15. Amplification factors A@) for both channel sets 
A and B in the propagation of the measurement errors. 
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Figure 16. Same as Figure 15 but for the study cases used in Figure 13. 

This brief analysis shows that the choice of the position 
and width of the selected channel has an important impact on 
the error generated in the reconstructed spectrum by the errors 
of measurements. It shows that for these cases the positions 
and widths given by the proposed scheme lead to the smallest 
error. Since this error is proportional to the amplification 
factor A(A) given by (1 l), an optimal choice of channels 
should minimize this factor. The particular example presented 
in this paper shows that the procedure proposed here leads to 
such a minimization of A@) . The generalization of this result 
to all situations is in progress. 

5. Possible Applications 

Considering, for instance, a measurement E; made in 
channel k which is different from the A4 selected channels, 
from (7) and (6), one obtains 

(12) 

where ckl is the integral of fk (A) a,@) over the spectral 
domain of channel k, that is, 

These expressions show that any channel emissivity out of 
these A4 independent channels can be expressed by the linear 
combination of the A4 channel emissivities whatever the 
sample is. This indicates that it may be possible to (1) use a 

simple radiometer with the A4 specific (independent) channels 
to compare the emissivities measured in any other channels, 
even if these differ in positions and widths and, (2) determine 
both surface temperature and channel emissivities from 
multispectral channel radiance if the channel number is 
greater than A4 (A4 independent channels). In fact, if a 
radiometer has N channels ( N > A4 ), there are N values of 
spectral radiance (measurements) and N+l unknowns (N 
emissivities (one per channel) plus one surface temperature). 
Since the N emissivities are not independent and there are N- 
M linear relationships among the emissivities as shown by 
(12), we have therefore in total 2N-A4 equations for N+l 
unknowns. Theoretically, if N 2 (A4 + 1)) the system is 
overdetermined. This method may be applicable only if the 
surface spectral characteristics are retrieved by (12). Thus it is 
important to know what are the general characteristics of the 
observed surface with help of the visible and near-infrared 
data. 

6. Conclusion 

A procedure developed for channel selection in the visible 
and near-infrared region has been applied to thermal infrared 
region in 8-13 pm for soil spectra reconstruction. The results 
of this study show that the reflectance (or emissivity) 
measurements in the six appropriate channels lead to accurate 
reconstruction of soil spectra in 8-13 urn for most species. 
They also show that the process proposed by Price for the 
channel selection minimizes, at least for the cases studied, the 
measurement error propagation to the whole reconstructed 
spectrum. Furthermore, the sensitivity and error analyses 
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show that the reconstruction of the spectrum is nearly 
insensitive to a small change in the central wavelengths and 
widths of the selected channels if there are no measurement 
errors introduced. The numerical analysis of the data sets used 
in this paper show that if the measurement errors are taken 
into account, the resulting errors on this reconstructed 
spectrum are increased by such a change. In other words, if 
each measurement is made with a random error, the resulting 
errors on the reconstructed spectrum are the smallest when the 
measurements are made in the spectral channels selected by 
the proposed process. 

The results of this study indicate that it may be possible to 
use instruments with the six specific channels to reconstruct 
the full spectrum of the soils, at least for the data sets used in 
this paper, and therefore to compare the results with other 
measurements even if they are made in channels with 
different positions and widths. In that case, any channel 
emissivity of soils out of those six channels can be expressed 
by the linear combination of the six channel emissivities; it 
appears to be possible to determine both surface temperature 
and channel emissivities of these soils from multispectral 
channel radiance if the channel number is greater than six. 

As emphasized in the introduction, the six channels 
selected for these soils may not be applicable without 
extension to the reconstruction of the spectrum for other 
materials such as rocks and minerals. Furthermore, since this 
paper uses laboratory data as an illustration, the practical 
results obtained cannot be extended to remote sensing data 
without addressing, for instance, the problems related to 
atmospheric corrections and temperature/emissivity 
separation as well as the instrument noise. Therefore the 
selection of channels proposed in this paper to reconstruct soil 
spectra from in situ measurements may not be optimal for 
more general situations. Nevertheless, the procedure proposed 
can be extended to remote sensing data of other materials, but 
appreciable future work has still to be done in order to address 
the impact of atmospheric effects, temperature/emissivity 
separation, noise of measurement as well as more complex 
spectra. 

It should be also kept in mind that the soil spectra used 
here are just laboratory spectra and represent only a fraction 
of the types of surfaces present in the real world. This study 
using laboratory spectra constitutes only an ideal case, and 
work is in progress to apply the technique used here to select 
the optimum channels for determining both surface 
temperature and emissivity from real or simulated remote 
sensing data. 
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